4.6 Article

Sampling and quantitative analysis of clean B-subtilis spores at sub-monolayer coverage by reflectance Fourier transform infrared microscopy using gold-coated filter substrates

Journal

APPLIED SPECTROSCOPY
Volume 62, Issue 8, Pages 881-888

Publisher

SOC APPLIED SPECTROSCOPY
DOI: 10.1366/000370208785284358

Keywords

Fourier transform infrared microspectroscopy; FT-IR spectroscopy; mid-infrared spectroscopy; MIR spectroscopy; bacterial endospores; reflectance; linearity studies; absorption cross-section; scattering profile

Funding

  1. Army Research Office [DAAD 190010557]

Ask authors/readers for more resources

A study was conducted to determine the concentration dependency of the mid-infrared (MIR) absorbance of bacterial spores. A range of concentrations of Bacillus subtilis endospores filtered across gold-coated filter membranes were analyzed by Fourier transform infrared (FT-IR) reflectance microscopy. Calibration curves were derived from the peak absorbances associated with Amide A, Amide 1, and Amide 11 vibrational frequencies by automatic baseline fitting to remove most of the scattering contribution. Linear relationships (R-2 >= 0.99) were observed between the concentrations of spores and the baseline-corrected peak absorbance for each frequency studied. Detection limits for our sampled area of 100 X 100 mu m(2) were determined to be 79, 39, and 184 spores (or 7.92 X 10(5), 3.92 X 10(5), and 1.84 X 10(6) spores/cm(2)) for the Amide A, Amide I, and Amide II peaks, respectively. Absorbance increased linearly above the scattering baseline with particle surface concentration up to 0.9 monolayer (ML) coverage, with the monolayer density calculated to be approximately 1.17 X 10(8) spores/cm(2). Scattering as a function of surface concentration, as estimated from extinction values at wavelengths exhibiting low absorbance, becomes nonlinear at a much lower surface concentration. The apparent scattering cross-section per spore decreased monotonically as concentrations increased toward 1.2 ML, while the absolute scattering decreased between 0.9 ML and 1.2 ML coverage. Calculations suggest that transverse spatial coherence effects are the origin of this nonlinearity, while the onset of nonlinearity in the baseline-corrected absorption is probably due to multiple scattering effects, which appear at a high surface concentration. Absorption cross-sections at peaks of the three bands were measured to be (2.15 +/- 0.05) X 10(-9), (1.48 +/- 0.03) X 10(-9), and (0.805 +/- 0.023) X 10(-9) cm(2), respectively. These values are smaller by a factor of 2-4 than expected from the literature. The origin of the reduced cross-section is hypothesized to be an electric field effect related to the surface selection rule.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available