4.8 Article

Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans

Journal

CELL
Volume 118, Issue 3, Pages 337-349

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2004.07.014

Keywords

-

Ask authors/readers for more resources

The organization of the motor protein myosin into motile cellular structures requires precise temporal and spatial control. Caenorhabditis elegans UNC-45 facilitates this by functioning both as a chaperone and as a Hsp90 cochaperone for myosin during thick filament assembly. Consequently, mutations in C. elegans unc45 result in paralyzed animals with severe myofibril disorganization in striated body wall muscles. Here, we report a new E3/E4 complex, formed by CHN-1, the C. elegans ortholog of CHIP (carboxyl terminus of Hsc70-interacting protein), and UFD-2, an enzyme known to have ubiquitin conjugating E4 activity in yeast, as necessary and sufficient to multiubiquitylate UNC-45 in vitro. The phenotype of unc-45 temperature-sensitive animals is partially suppressed by chn-1 loss of function, while UNC-45 overexpression in worms deficient for chn-1 results in severely disorganized muscle cells. These results identify CHN-1 and UFD-2 as a functional E3/E4 complex and UNC-45 as its physiologically relevant substrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available