4.5 Article

Increased measurement accuracy for sequence-verified microarray probes

Journal

PHYSIOLOGICAL GENOMICS
Volume 18, Issue 3, Pages 308-315

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00066.2004

Keywords

Affymetrix; Agilent; reference sequence; RefSeq

Ask authors/readers for more resources

Microarrays have been extensively used to investigate genome-wide expression patterns. Although this technology has been tremendously successful, it has suffered from suboptimal individual measurement precision. Significant improvements in this respect have been recently made. In an effort to further explore the underlying variability, we have attempted to globally assess the accuracy of individual probe sequences used to query gene expression. For mammalian Affymetrix microarrays, we identify an unexpectedly large number of probes (greater than 19% of the probes on each platform) that do not correspond to their appropriate mRNA reference sequence (RefSeq). Compared with data derived from inaccurate probes, we find that data derived from sequence-verified probes show 1) increased precision in technical replicates, 2) increased accuracy translating data from one generation microarray to another, 3) increased accuracy translating data from oligonucleotide to cDNA microarrays, and 4) improved capture of biological information in human clinical specimens. The logical conclusion of this work is that probes containing the most reliable sequence information provide the most accurate results. Our data reveal that the identification and removal of inaccurate probes can significantly improve this technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available