4.8 Article

Complex auditory behaviour emerges from simple reactive steering

Journal

NATURE
Volume 430, Issue 7001, Pages 781-785

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02787

Keywords

-

Funding

  1. Biotechnology and Biological Sciences Research Council [S19133] Funding Source: researchfish
  2. Biotechnology and Biological Sciences Research Council [S19133] Funding Source: Medline

Ask authors/readers for more resources

The recognition and localization of sound signals is fundamental to acoustic communication(1,2). Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways(3,4). In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song(5-7). Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song(8-10). Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation(11-13).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available