4.6 Article

Cysteine oxidation of tau and microtubule-associated protein-2 by peroxynitrite - Modulation of microtubule assembly kinetics by the thioredoxin reductase system

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 33, Pages 35101-35105

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M405471200

Keywords

-

Funding

  1. NINDS NIH HHS [R15 NS 38885] Funding Source: Medline

Ask authors/readers for more resources

Alterations in the redox status of proteins have been implicated in the pathology of several neurodegenerative conditions including Alzheimer and Parkinson diseases. We report that peroxynitrite- and hydrogen peroxide-induced disulfides in the neuron-specific microtubule-associated proteins tau and microtubule-associated protein-2 are substrates for the ubiquitous thioredoxin reductase system composed of thioredoxin reductase, human or Escherichia coli thioredoxin, and NADPH. Tau and microtubule-associated protein-2 cysteine oxidation and reduction were quantitated by monitoring the incorporation of 5-iodoacetamidofluorescein, a thiol-specific labeling reagent. Cysteine oxidation of tau and microtubule-associated protein-2 to disulfides altered the ability of the proteins to promote the assembly of microtubules from purified porcine tubulin. Treatment of tau and microtubule-associated protein-2 with either the thioredoxin reductase system or small molecule reductants fully restores the ability of the MAPs to promote microtubule assembly. Thus changes in the redox state of microtubule-associated proteins may regulate microtubule polymerization in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available