4.6 Article

The mammalian exocyst, a complex required for exocytosis, inhibits tubulin polymerization

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 34, Pages 35958-35966

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313778200

Keywords

-

Funding

  1. NINDS NIH HHS [NS18218, NS388892] Funding Source: Medline

Ask authors/readers for more resources

The exocyst is a 734-kDa complex essential for development. Perturbation of its function results in early embryonic lethality. Extensive investigation has revealed that this complex participates in multiple biological processes, including protein synthesis and vesicle/protein targeting to the plasma membrane. In this article we report that the exocyst may also play a role in modulating microtubule dynamics. Using monoclonal antibodies, we observed that endogenous exocyst subunits co-localized with microtubules and mitotic spindles in normal rat kidney cells. To test for a functional relationship between the exocyst complex and microtubules, we established an in vitro exocyst reconstitution assay and studied exocyst effect on microtubule dynamics. We found that the exocyst complex reconstituted from eight recombinant exocyst subunits inhibited tubulin polymerization in vitro. Deletion of exocyst subunit sec5, sec6, sec15, or exo70 diminished its tubulin polymerization inhibition activity. Surprisingly, exocyst subunit exo70 itself was also capable of inhibiting tubulin polymerization, although exocyst complex with exo70 deletion did not lose its activity completely. Overexpression of exo70 in NRK cells resulted in microtubule network disruption and the formation of filopodia-like plasma membrane protrusions. The formation of these membrane protrusions was greatly hampered by stabilizing microtubules with taxol. Overexpression of exo84, an exocyst subunit that did not show tubulin polymerization inhibition activity, did not cause this phenotype. Results shown in this article, along with a previous report that localized microtubule instability induces plasma membrane addition, implicates a novel role for the exocyst in modulating microtubule dynamics underlying exocytosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available