4.7 Article

A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams.

Journal

APPLIED SOFT COMPUTING
Volume 16, Issue -, Pages 223-233

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2013.12.008

Keywords

Gravitational search algorithm; Orthogonal crossover; Concrete gravity dams; Optimal shape; Weighted least squares support vector machine

Ask authors/readers for more resources

A hybrid approach based on an improved gravitational search algorithm (IGSA) and orthogonal crossover (OC) is proposed to efficiently find the optimal shape of concrete gravity dams. The proposed hybrid approach is called IGSA-OC. The hybrid of IGSA and the OC operator can improve the global exploration ability of the IGSA method, and increase its convergence rate. To find the optimal shape of concrete gravity dams, the interaction effects of dam-water-foundation rock subjected to earthquake loading are considered in this study. The computational cost of the optimal shape of concrete gravity dams subjected earthquake loads is usually high. Due to this problem, the weighted least squares support vector machine (WLS-SVM) regression as an efficient metamodel is utilized to considerably predict dynamic responses of gravity dams by spending low computational cost. To testify the robustness and efficiency of the proposed IGSA-OC, first, four well-known benchmark functions in literatures are optimized using the proposed IGSA-OC, and provides comparisons with the standard gravitational search algorithm (GSA) and the other modified GSA methods. Then, the optimal shape of concrete gravity dams is found using IGSA-OC. The solutions obtained by the IGSA-OC are compared with those of the standard GSA, IGSA and particle swarm optimization (PSO). The numerical results demonstrate that the proposed IGSA-OC significantly outperforms the standard GSA, IGSA and PSO. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available