4.7 Article

Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines

Journal

APPLIED SOFT COMPUTING
Volume 22, Issue -, Pages 178-188

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2014.05.015

Keywords

Multivariate adaptive regression splines; Artificial intelligence; Artificial bee colony; Energy performance of buildings; Heating load; Cooling load

Ask authors/readers for more resources

This paper proposes using evolutionary multivariate adaptive regression splines (EMARS), an artificial intelligence (AI) model, to efficiently predict the energy performance of buildings (EPB). EMARS is a hybrid of multivariate adaptive regression splines (MARS) and artificial bee colony (ABC). In EMARS, MARS addresses learning and curve fitting and ABC carries out optimization to determine the fittest parameter settings with minimal prediction error. The proposed model was constructed using 768 experimental datasets from the literature, with eight input parameters and two output parameters (cooling load (CL) and heating load (HL)). EMARS performance was compared against five other AI models, including MARS, back-propagation neural network (BPNN), radial basis function neural network (RBFNN), classification and regression tree (CART), and support vector machine (SVM). A 10-fold cross-validation approach found EMARS to be the best model for predicting CL and HL with 65% and 45% deduction in terms of RMSE, respectively, compared to other methods. Furthermore, EMARS is able to operate autonomously without human intervention or domain knowledge; represent derived relationship between response (HL and a) with predictor variables associated with their relative importance. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available