4.7 Article

Quantum Monte Carlo study of helium clusters doped with nitrous oxide: Quantum solvation and rotational dynamics

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 121, Issue 8, Pages 3577-3581

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1774160

Keywords

-

Ask authors/readers for more resources

Dynamical and structural properties of small (4)He(N)-N(2)O complexes have been analyzed using ground-state and finite-temperature Monte Carlo simulations. The effective rotational constants resulting from the ground-state calculations are in excellent agreement with the results of a recent spectroscopic study [Y. Xu , Phys. Rev. Lett. 91, 163401 (2003)]. After an initial decrease for cluster sizes up to N=8, the rotational constant increases, signaling a transition from a molecular complex to a quantum-solvated system. Such a turnaround is not present in the rotational constants extracted from the finite-temperature Monte Carlo calculations, performed for Boltzmann statistics, thus highlighting the importance of exchange effects to explain the decoupling between a solvated dopant and the helium motion. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available