4.7 Article

A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems

Journal

APPLIED SOFT COMPUTING
Volume 13, Issue 4, Pages 2188-2203

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2012.12.007

Keywords

Artificial bee colony; Particle swarm optimization; Recombination procedure; Hybridization; Continuous optimization

Ask authors/readers for more resources

This paper presents a hybridization of particle swarm optimization (PSO) and artificial bee colony (ABC) approaches, based on recombination procedure. The PSO and ABC are population-based iterative methods. While the PSO directly uses the global best solution of the population to determine new positions for the particles at the each iteration, agents (employed, onlooker and scout bees) of the ABC do not directly use this information but the global best solution in the ABC is stored at the each iteration. The global best solutions obtained by the PSO and ABC are used for recombination, and the solution obtained from this recombination is given to the populations of the PSO and ABC as the global best and neighbor food source for onlooker bees, respectively. Information flow between particle swarm and bee colony helps increase global and local search abilities of the hybrid approach which is referred to as Hybrid approach based on Particle swarm optimization and Artificial bee colony algorithm, HPA for short. In order to test the performance of the HPA algorithm, this study utilizes twelve basic numerical benchmark functions in addition to CEC2005 composite functions and an energy demand estimation problem. The experimental results obtained by the HPA are compared with those of the PSO and ABC. The performance of the HPA is also compared with that of other hybrid methods based on the PSO and ABC. The experimental results show that the HPA algorithm is an alternative and competitive optimizer for continuous optimization problems. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available