4.5 Article

Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 112, Issue 1-2, Pages 97-107

Publisher

ELSEVIER
DOI: 10.1016/j.jbiotec.2004.03.019

Keywords

surface nanostructures; electron-beam lithography; chemical lithography; scanning confocal fluorescence imaging; self-assembled monolayers

Ask authors/readers for more resources

We used electron-beam lithography to fabricate chemical nanostructures, i.e, amino groups in aromatic self-assembled monolayers (SAMs) on gold surfaces. The amino groups are utilized as reactive species for mild covalent attachment of fluorescently labeled proteins. Since non-radiative energy transfer results in strong quenching of fluorescent dyes in the vicinity of the metal surfaces, different labeling strategies were investigated. Spacers of varying length were introduced between the gold surface and the fluorescently labeled proteins. First, streptavidin was directly coupled to the amino groups of the SAMs via a glutaraldehyde linker and fluorescently labeled biotin (X-Biotin) was added, resulting in a distance of similar to2 nm between the dyes and the surface. Scanning confocal fluorescence images show that efficient energy transfer from the dye to the surface occurs, which is reflected in poor signal-to-background (S/B) ratios of similar to1. Coupling of a second streptavidin layer increases the S/B-ratio only slightly to similar to2. The S/B-ratio of the fluorescence signals could be further increased to similar to4 by coupling of an additional fluorescently labeled antibody layer. Finally, we introduced tetraethylenepentamine as functional spacer molecule to diminish fluorescence quenching by the surface. We demonstrate that the use of this spacer in combination with multiple antibody layers enables the controlled fabrication of highly fluorescent three-dimensional nanostructures with S/B-ratios of >20. The presented technique might be used advantageously for the controlled three-dimensional immobilization of single protein or DNA molecules and the well-defined assembly of protein complexes. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available