4.7 Article

A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system

Journal

APPLIED SOFT COMPUTING
Volume 12, Issue 11, Pages 3603-3614

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2012.06.012

Keywords

Meta-cognition; Self-regulatory learning; Neuro-fuzzy inference systems; Time series prediction; Non-linear system identification; Classification

Funding

  1. Ministry of Education, Singapore, AcRF Tier I

Ask authors/readers for more resources

In this paper, we present a meta-cognitive sequential learning algorithm for a neuro-fuzzy inference system, referred to as, 'Meta-Cognitive Neuro-Fuzzy Inference System' (McFIS). McFIS has two components, viz., a cognitive component and a meta-cognitive component. The cognitive component employed is a Takagi-Sugeno-Kang type-0 neuro-fuzzy inference system. A self-regulatory learning mechanism that controls the learning process of the cognitive component, by deciding what-to-learn, when-to-learn and how-to-learn from sequential training data, forms the meta-cognitive component. McFIS realizes the above decision by employing sample deletion, sample reserve and sample learning strategy, respectively. The meta-cognitive component use the instantaneous error of the sample and spherical potential of the rule antecedents to select the best training strategy for the current sample. Also, in sample learning strategy, when a new rule is added the rule consequent is assigned such that the localization property of Gaussian rule is fully exploited. The performance of McFIS is evaluated on four regression and eight classification problems. The performance comparison shows the superior generalization performance of McFIS compared to existing algorithms. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available