4.1 Article

Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

Journal

PLASMID
Volume 52, Issue 2, Pages 131-138

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.plasmid.2004.06.001

Keywords

thermophilic Clostridia; plasmids; sequence; replication origin; rolling circle plasmid; theta-type plasmid

Ask authors/readers for more resources

The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence revealed 10 open reading frames (ORFs). The two largest of these, namely Orf21 and Orf41, showed similarity to a Bacillus plasmid recombinase and a Pseudoalteromonas plasmid replication protein, respectively. A sequence with homology to double stranded replication origins from rolling circle plasmids was found, but no single stranded intermediates, characteristic of rolling circle replication, were found on Southern blots. The larger plasmid, pBAL, was found to be a 8294 bp plasmid with a GC content of 39%. It revealed 17 ORFs, of which three showed similarity at the amino acid (aa) level to known proteins. Orf22 showed the strongest similarity (33% aa) to replication proteins from large multiresistance Staphylococcal and Lactococcal plasmids, all of which are believed to replicate via a theta-like replication mechanism. Orf32 showed similarity to both DNA repair proteins and DNA polymerases with highest similarity to DNA repair protein from Campylobacter jejuni (25% aa). Orf34 showed similarity to sigma factors with highest similarity (28% aa) to the sporulation specific Sigma factor, Sigma 28(K) from Bacillus thuringiensis. (C) 2004 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available