4.5 Article

Monte Carlo maximum likelihood in model-based geostatistics

Journal

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
Volume 13, Issue 3, Pages 702-718

Publisher

AMER STATISTICAL ASSOC
DOI: 10.1198/106186004X2525

Keywords

generalized linear spatial models; Markov chain Monte Carlo; spatial generalized linear mixed models; spatial statistics

Ask authors/readers for more resources

When using a model-based approach to geostatistical problems, often, due to the complexity of the models, inference relies on Markov chain Monte Carlo methods. This article focuses on the generalized linear spatial models, and demonstrates that parameter estimation and model selection using Markov chain Monte Carlo maximum likelihood is a feasible and very useful technique. A dataset of radionuclide concentrations on Rongelap Island is used to illustrate the techniques. For this dataset we demonstrate that the log-link function is not a good choice, and that there exists additional nonspatial variation which cannot be attributed to the Poisson error distribution. We also show that the interpretation of this additional variation as either micro-scale variation or measurement error has a significant impact on predictions. The techniques presented in this article would also be useful for other types of geostatistical models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available