4.7 Article

Rapid transport pathways for geothermal fluids in an active Great Basin fault zone

Journal

GEOLOGY
Volume 32, Issue 9, Pages 825-828

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G20617.1

Keywords

fault hydrology; geothermal; heterogeneity; geostatistics; groundwater

Categories

Ask authors/readers for more resources

We present an analysis of fault hydraulic architecture, based on >700 spatially distributed ground and geothermal spring temperature measurements taken in an active fault zone. Geostatistical simulations were used to extrapolate the measured data over an 800 X 100 m area and develop a high-resolution image of temperatures in the fault. On the basis of the modeled temperatures, a simple analytical model of convective heat transport was used to infer a probability distribution function for hydraulic conductivities in a two-dimensional plane parallel to the land surface, and the partitioning of flow between flow paths of different conductivities was calculated as a fraction of the total flux. The analysis demonstrates the existence of spatially discrete, high-permeability flow paths within the predominantly lower-permeability fault materials. Although the existence of fast-flow paths in faults has been hypothesized for >10 yr, their prevalence and contribution to the total flow of fluid in a fault zone are debated. On the basis of our findings, we conclude that the flux transmitted by an individual fast-flow path is significantly greater than that of an average flow path, but the total flux transported in fast-now paths is a negligible fraction of the total flux transmitted by the fault.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available