4.2 Article

Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian Amazon

Journal

ENVIRONMENTAL BIOLOGY OF FISHES
Volume 71, Issue 1, Pages 33-51

Publisher

SPRINGER
DOI: 10.1023/B:EBFI.0000043156.69324.94

Keywords

neotropical; community structure; floodplain; piscivore-transparency-morphometry (PTM) model

Ask authors/readers for more resources

We sampled lagoon, river and forest stream habitats during the rising water, wet, falling water, and dry seasons in the lowland region of the Yasuni National Reserve in the Ecuadorian Amazon. We collected 195 species, increasing the current number of species for the Napo River basin to approximately 562. The steady rate of species accumulation per sample suggests that the fish fauna is still undersampled. Lagoon, river and forest stream fish communities are highly diverse and variable, composed of common species found within several habitats, of characteristic species found throughout the year, and of seasonally migrating species. Characteristic lagoon species were mainly the curimatids Curimata vittata, Psectrogaster amazonica, Potamorhina altamazonica, P. latior and Cyphocharax plumbeus. The characins Hyphessobrycon copelandi and Hemigrammus cf. lunatus and the catfishes Nemadoras humeralis, Pimelodella sp. C and Sorubim sp. A were characteristic river species. Characteristic forest stream species included Hoplias malabaricus, Hyphessobrycon copelandi, Pimelodella sp. B and Sternopyugus macrurus. During the dry season, lagoon and river habitats had the highest number of individuals and species, as fishes were concentrated in decreasing habitat area. In contrast, stream habitats had the highest species richness and abundance during the rising water and falling water seasons. Species collected included vital food fishes and seasonal migrants. The migratory catfishes Brachyplatystoma vaillantii, Hemisorubim platyrhynchos, Platynematichthys notatus, Platystomatichthys sturio and Sorubim lima were collected during the falling water season, which suggests that these species may begin migrating earlier than expected. These findings highlight the importance of seasonality for both adequately assessing aquatic biodiversity and for developing research and conservation programs encompassing whole river ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available