4.5 Article

Susceptibility weighted imaging (SWI)

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 52, Issue 3, Pages 612-618

Publisher

WILEY
DOI: 10.1002/mrm.20198

Keywords

magnetic susceptibility; phase imaging; water/fat separation; artery/vein separation; imaging iron

Funding

  1. NHLBI NIH HHS [HL62983] Funding Source: Medline
  2. NIA NIH HHS [AG 20948] Funding Source: Medline

Ask authors/readers for more resources

Susceptibility differences between tissues can be utilized as a new type of contrast in MRI that is different from spin density, T-1-, or T-2-weighted imaging. Signals from substances with different magnetic susceptibilities compared to their neighboring tissue will become out of phase with these tissues at sufficiently long echo times (TEs). Thus, phase imaging offers a means of enhancing contrast in MRI. Specifically, the phase images themselves can provide excellent contrast between gray matter (GM) and white matter (WM), iron-laden tissues, venous blood vessels, and other tissues with susceptibilities that are different from the background tissue. Also, for the first time, projection phase images are shown to demonstrate tissue (vessel) continuity. In this work, the best approach for combining magnitude and phase images is discussed. The phase images are high-pass-filtered and then transformed to a special phase mask that varies in amplitude between zero and unity. This mask is multiplied a few times into the original magnitude image to create enhanced contrast between tissues with different susceptibilities. For this reason, this method is referred to as susceptibility-weighted imaging (SWI). Mathematical arguments are presented to determine the number of phase mask multiplications that should take place. Examples are given for enhancing GM/WM contrast and water/fat contrast, identifying brain iron, and visualizing veins in the brain. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available