4.8 Article

Sintered hydroxyfluorapatites - IV: the effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells

Journal

BIOMATERIALS
Volume 25, Issue 20, Pages 4977-4986

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.02.042

Keywords

mouse embryonic stem (ES) cells; proliferation; colonisation; differentiation; hydroxyapatite; fluoride; tissue engineering scaffold

Ask authors/readers for more resources

Biodegradable scaffolds serve a central role for tissue engineering scaffolds and guiding tissue regeneration. Some of these scaffolds, including apatites, display a significant effect upon cell adhesion and cell proliferation. The incorporation of scaffold technology with the developing embryonic stem (ES) cell field and the capacity of ES cells for self-renewal and differentiation are believed to hold enormous potential for applications in biomedical research and regenerative medicine. The purpose of this work was to determine the effect of hydroxyapatite (HAP) and fluoride substitutions of HAP upon ES cell growth and colonisation. Sintered hydroxyfluorapatite discs were found to support cellular proliferation and colonisation, and the ES cells displayed a tendency for differentiation on the apatite surface as determined by reductions in colony Oct4 immunoreactivity. Fluoride-containing HAPs were found to provide equivalent support to gelatin in terms of cell numbers, yet superior support for cellular colonisation when compared to HAP. This study indicates that fluoride substitutions of HAP may represent a viable strategy for the development of certain engineered tissue replacements and tissue regeneration systems using ES cells. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available