4.6 Article

Dynamic Abnormal Grain Growth in Refractory Metals

Journal

JOM
Volume 67, Issue 11, Pages 2642-2645

Publisher

SPRINGER
DOI: 10.1007/s11837-015-1592-4

Keywords

-

Funding

  1. National Science Foundation [DMR-1105468, DMR-9974476]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1105468] Funding Source: National Science Foundation

Ask authors/readers for more resources

High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available