4.6 Article

Cerebral expression of interleukin-12 induces neurological disease via differential pathways and recruits antigen-specific T cells in virus-infected mice

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 165, Issue 3, Pages 949-958

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)63356-1

Keywords

-

Categories

Ask authors/readers for more resources

Transgenic expression of interleukin-12 (IL-12) in astrocytes causes a spontaneous inflammatory central nervous system disorder in aged mice. Here we show that spontaneous disorder developed only when both mature lymphocytes and interferon (IFN)-gamma were present. Infection with noncytolytic Borna disease virus (BDV) did not affect wild-type mice but accelerated disease of IL-12 transgenic mice. Infection of transgenic mice lacking lymphocytes did not result in neurological symptoms. in contrast, BDV infection of transgenic mice lacking IFN-gamma induced neurological disease with delayed onset of symptoms that resembled those in infected transgenic mice with a functional IFN-gamma gene. In BDV-infected transgenic mice devoid of IFN-gamma no cerebellar calcification was observed, and multiplication of BDV was not inhibited. To determine the antigen specificity of lymphocytes in brains of diseased animals, the IL-12 transgene was introduced into an H-2(k) genetic background. Infection of IL-12 transgenic H-2(k) mice resulted in extensive lymphocytic infiltration into the cerebellum but not into other brain regions that also contained viral antigen but expressed the transgene at lower levels. Tetramer analysis revealed that most CD8 T cells in the cerebellum of such mice were BDV-specific. Our results thus demonstrate that IFN-gamma secreting lymphocytes are responsible for disease of IL-12 transgenic mice. They further suggest that expression of IL-12 in the central nervous system may lead to localized recruitment of T cells that recognize antigens expressed in the brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available