4.5 Article

Estimating site-specific nitrogen crop response functions: A conceptual framework and geostatistical model

Journal

AGRONOMY JOURNAL
Volume 96, Issue 5, Pages 1331-1343

Publisher

AMER SOC AGRONOMY
DOI: 10.2134/agronj2004.1331

Keywords

-

Categories

Ask authors/readers for more resources

Confirming the precision agriculture hypothesis for variable-rate N applications (VRAs) is challenging. To confront this challenge, researchers have used increasingly sophisticated statistical models to estimate and compare site-specific crop response functions (SSCRFs). While progress has been made, it has been hampered by the lack of a conceptual framework to guide the development of appropriate statistical models. This paper provides such a framework and demonstrates its utility by developing a heteroscedastic, fixed and random effects, geostatistical model to test if VRA can increase N returns. The novelty of the model is the inclusion of site, spatial, treatment, and treatment strip heteroscedasticity and correlation. Applied to data collected in 1995 from two corn (Zea mays L.) N response experiments in south-central Minnesota, results demonstrate the importance of including site, spatial, treatment, and treatment strip effects in the estimation of SSCRFs. Results also indicate a significant potential for VRA to increase N returns and that these potential returns increase as the area of the management unit decreases. At one location, there was greater than a 95% chance that VRA could have increased profitability if the cost of implementing VRA was less than $14.5 ha(-1). At the other location, if implementation costs were less than $48.3 ha(-1), there was greater than a 95% chance of increased profitability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available