4.2 Article

Purification and characterization of hepatitis C virus non-structural protein 5A expressed in Escherichia coli

Journal

PROTEIN EXPRESSION AND PURIFICATION
Volume 37, Issue 1, Pages 144-153

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pep.2004.05.005

Keywords

hepatitis C virus; NS5A

Funding

  1. NIAID NIH HHS [AI66919] Funding Source: Medline

Ask authors/readers for more resources

We have employed a pET-ubiquitin expression system to produce two his-tagged forms of hepatitis C virus (HCV) non-structural protein 5A (NS5A) in Escherichia coli. One derivative contains the full-length protein extended to include a carboxy-terminal hexahistidine tag; the other derivative contains an amino-terminal hexahistidine tag in place of the 32 amino acid amphipathic helix that mediates membrane association. At least 1mg of each derivative at a purity of 90% could be produced from a 1-L culture. The purified derivatives produced high titer antibody that recognized both p56 and p58 forms of NS5A in Huh-7.5 cells expressing an HCV subgenomic replicon. The NS5A derivatives were efficiently phosphorylated by casein kinase 11, leading to at least 5 mol of phosphate incorporated per mole of protein. Interestingly, this level of phosphorylation did not alter the migration of the protein in an SDS polyacrylamide gel, suggesting that hyperphosphorylation alone is not sufficient to generate the p58 form of NS5A observed in Huh-7 cells. Neither NS5A derivative was capable of inhibiting the eIF2alpha-phosphorylation activity of the activated form of the double-stranded RNA-activated protein kinase, PKR, suggesting that NS5A phosphorylation may be required for this function of NS5A. However, both unphosphorylated derivatives were shown to interact with NS513, the HCV RNA-dependent RNA polymerase, in solution by using a novel kinase-protection assay. The availability of purified HCV NS5A will permit rigorous biochemical and biophysical characterization of this protein, ultimately providing insight into the function of this protein during HCV genome replication. @ 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available