4.7 Article

Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 200, Issue 3, Pages 377-386

Publisher

WILEY
DOI: 10.1002/jcp.20034

Keywords

-

Funding

  1. NHLBI NIH HHS [HL 6544101] Funding Source: Medline

Ask authors/readers for more resources

Fibroblasts are responsible in large part for production, organization, and turnover of the extracellular matrix (ECM), thereby regulating the fibrotic content of the heart. Excessive fibrosis, which has been associated with certain forms of hemodynamic overload such as hypertension, is thought to result in increased ventricular chamber stiffness, and eventual heart failure. As such, the role of mechanical stretch in regulating fibroblast activity is crucial to our understanding of healthy and diseased hearts. However, little is known about the effects of alterations in the composition of the ECM in regulating mechanotransduction in cardiac fibroblasts. In order to address this question, rat cardiac fibroblasts were cultured on silastic membranes coated with different ECM substrates, and cyclically stretched for various durations. Experiments were designed to assess the activation of signaling pathways, as well as changes in collagen production, cellular proliferation, and morphology. Mitogen activated protein kinase (MAP kinase) was most rapidly activated, and collagen I expression was most abundant, in cells stretched on randomly organized collagen, and uncoated charged membranes. Regardless of the nature of the ECM substrate, stretched cells decreased proliferation, however, this effect was most marked in cells stretched on randomly organized collagen. Finally, cells stretched on all ECM substrates increased their surface area, but this was observed most significantly in cells adherent to aligned collagen, randomly organized collagen, and uncoated, charged membranes. Taken together, these results suggest cardiac fibroblasts may differentially interpret a mechanical stimulus, in terms of both signal transduction, and specific long-term events such as gene transcription, based on the composition and organization of the ECM. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available