4.8 Article

Supramolecular assemblies based on copolymers of PEG600 and functionalized aromatic diesters for drug delivery applications

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 34, Pages 10640-10644

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja039651w

Keywords

-

Ask authors/readers for more resources

A chemoenzymatic approach has been developed to synthesize poly(ethylene glycol)-based amphiphilic copolymers under mild reaction conditions that self-assemble in aqueous media to form polymeric nanomicelles in the range of 20-50 nm. The supramolecular organization of polymeric nanomicelles was studied by H-1 NMR longitudinal relaxation time (T-1) and light scattering techniques (static and dynamic). Interestingly, the enzyme novozyme-435 plays an important role in controlling the polymerization and distribution of polymer chains, which is critical for the formation of nanomicelles with unimodal distributions. The methodology developed is highly flexible as it allows the introduction of various functionalities in the polymeric nanomicelles. These self-organized nanomicelles are highly efficient drug delivery vehicles for hydrophobic and partially hydrophilic drugs, both transdermally and orally, as they have the ability to encapsulate guest molecules during self-organization. In vivo studies by encapsulating anti-inflammatory agents (aspirin and naproxen) in these polymeric nanomicelles and by applying topically resulted in significant reduction in inflammation. The % reduction in inflammation using polymeric nanomicelles containing aspirin and naproxen was 62 and 64%, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available