4.4 Article

Modulation of locomotor activity by multiple 5-HT and dopaminergic receptor subtypes in the neonatal mouse spinal cord

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 92, Issue 3, Pages 1566-1576

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01181.2003

Keywords

-

Ask authors/readers for more resources

Recently, it has been shown that bath-applied 5-HT can elicit fictive locomotion from perinatal mouse preparations. Since 5-HT acts on multiple receptor subtypes, the focus of this study was to examine which receptor families contribute to the genesis and modulation of locomotor activity. Blockade of 5-HT(2) (ketanserin or N-desmethylclozapine) or 5-HT(7) receptors (SB-269970) could reversibly block or modulate the locomotor-like pattern. A 5-HT(2) agonist (alpha-methyl-5-HT) was shown to be capable of activating the rhythm. Bath application of 5-HT(7) agonists (5-CT) generally led to a tonic increase in neurogram discharge, accompanied by bouts of rhythmic activity. Blockade of dopaminergic receptors {D(1) [R-(+)-SCH-23390 or LE 300]/D(2) [(+/-)-sulpiride or L-741,626]} could reversibly disrupt the rhythm and most effectively did so when the D(1) and D(2) antagonists were added together. Conversely, 5-HT(2) and D(1)/D(2) agonists can interact to evoke locomotor activity. Overall, our data show that, in the neonatal mouse preparation, 5-HT evoked locomotion is partly dependent on activation of 5-HT(2), 5-HT(7), and dopaminergic receptor subtypes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available