4.0 Article

Multiscale Simulation of the Synthesis, Assembly and Properties of Nanostructured Organic/Inorganic Hybrid Materials

Journal

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jctn.2004.024

Keywords

Polyhedral Oligomeric Silsequioxanes; POSS; Multiscale Simulation

Funding

  1. National Science Foundation [DMR-0103399]

Ask authors/readers for more resources

Polyhedral oligomeric silsesquioxane (POSS) molecules are unique nanometer-sized inorganic-organic hybrid structures based on a (SiO1.5)(8) core. Depending on the functionalization of the POSS cages, the resulting systems can be solid or liquid, or, upon cross-linking, turned into a network. Although much is known experimentally about the chemical synthesis of POSS systems, very little theoretical understanding exists at the molecular level or beyond. In particular, the way in which individual POSS molecules can be assembled and manipulated at the nanoscale to form meso- and macroscale systems has not been investigated previously. The overall goal of our work is to develop a multiscale computational framework to simulate the synthesis and self- and guided-assembly of POSS systems. In this report we present an overview of the computational approach on which this framework is based, which combines simulation techniques at the electronic, atomistic, and mesoscale levels, and discuss progress in each of these areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available