4.7 Article

Robust wide-baseline stereo from maximally stable extremal regions

Journal

IMAGE AND VISION COMPUTING
Volume 22, Issue 10, Pages 761-767

Publisher

ELSEVIER
DOI: 10.1016/j.imavis.2004.02.006

Keywords

wide-baseline stereo; distinguished regions; maximally stable extremal regions; MSER; robust metric

Ask authors/readers for more resources

The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly desirable properties: the set is closed under (1) continuous (and thus projective) transformation of image coordinates and (2) monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinely invariant stable subset of extremal regions, the maximally stable extremal regions (MSER). A new robust similarity measure for establishing tentative correspondences is proposed. The robustness ensures that invariants from multiple measurement regions (regions obtained by invariant constructions from extremal re ions), some that are significantly larger (and hence discriminative) than the MSERs, may be used to establish tentative correspondences. The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes. Significant change of scale (3.5 X), illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems. Good estimates of epipolar geometry (average distance from corresponding points to the epipolar line below 0.09 of the inter-pixel distance) are obtained. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available