4.5 Article

Analysis of the voltammetric response of electroactive guests in the presence of non-electroactive hosts at moderate concentrations

Journal

ELECTROANALYSIS
Volume 16, Issue 18, Pages 1469-1477

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/elan.200302978

Keywords

electroactive guests; non-electroactive hosts; voltammetric responses; reversible redox systems; binding constants; one-wave shift behavior

Ask authors/readers for more resources

In this work, we present a method to analyze the voltammetric response of reversible redox systems involving molecules that, bearing m non-interactive electroactive sites, can undergo fast complexation equilibria with host molecules present at concentrations of the same order of magnitude as those of the electroactive guest. The approach focuses on systems for which the relative values of the binding constants for the oxidized and reduced forms of the guest result in the displacement of the voltammetric response of the electroactive molecule as the concentration of the host is increased in the electrolytic solution. This behavior is commonly known as one wave shift behavior. Based on a series of assumptions, the method allows calculation of all the thermodynamic parameters that describe the electrochemical and complexation equilibria of a given host-guest system. The main strength of the suggested method, however, relies on the fact that it only requires cyclic voltammetry data and that it can be used for systems in which large concentrations of the host can not be employed either due to important changes of the ionic strength or to solubility problems. Although the accuracy of the obtained information is limited by the quality of the data provided by the technique, and by the assumptions employed, it certainly represents an excellent starting point for subsequent refinement either using digital simulations or an independent experimental technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available