4.6 Article

The high-velocity clouds and the Magellanic Clouds

Journal

ASTRONOMY & ASTROPHYSICS
Volume 423, Issue 3, Pages 895-907

Publisher

E D P SCIENCES
DOI: 10.1051/0004-6361:20040177

Keywords

ISM : clouds; galaxies : magellanic clouds; Galaxy : structure; Galaxy : halo; Galaxy : evolution; galaxies : interactions

Ask authors/readers for more resources

From an analysis of the sky and velocity distributions of the high-velocity clouds (HVCs) we show that the majority of the HVCs has a common origin. We conclude that the HVCs surround the Galaxy, forming a metacloud of similar to300 kpc in size and with a mass of similar to3 x 10(9) M-., and that they are the product of a powerful superwind (about 10(58) ergs), which occurred in the Magellanic Clouds about 570 Myr ago as a consequence of the interaction of the Large and Small Magellanic Clouds. The HVCs might be magnetic bubbles of semi-ionized gas, blown from the Magellanic Clouds around 570 Myr ago, that circulate largely through the halo of the Galaxy as a stream or flow of gas. On the basis of the connection found between the HVCs and the Magellanic Clouds, we have constructed a theoretical model with the purpose of computing the orbits of a sample of test particles representing the HVCs, under the gravitational action of the Galaxy and the Magellanic Clouds. The orbits of the Large and Small Magellanic Clouds have been traced backwards in time to estimate the position and velocity of the Clouds at the time of the collision between the two Clouds, and to infer the initial conditions of the HVCs. The model can reproduce the main features of position and velocity distributions of the HVCs, like the overall structure and kinematics of the Magellanic Stream. The initial velocities of the HVCs were the result of velocities of expansion that permitted the escape of the HVCs from the Magellanic Clouds plus the systemic velocity of the Magellanic Clouds at the time of the collision. With these initial conditions, the Galactic gravitational potential induced differential rotations or shearing motions that elongated the cloud of HVCs in the orbital direction, forming the rear and front parts of the Magellanic stream. The population of HVCs is centered around the Magellanic Clouds. The eccentric position of the Sun within the cloud of HVCs explains the asymmetries between the sky distributions of the HVCs of the northern Galactic hemisphere and those of the southern Galactic hemisphere. In the light of the model we analyze the effects that the passage of the HVC flow through the Galactic disk has produced on the interstellar medium. The effects of the HVC flow can account for many observational details such as the Galactic warp, HI shells and supershells in the gaseous layer of the outer parts of the Milky Way. The Galactic disk was target of numerous impacts of HVCs in the course of the last 400 Myr, accumulating mass at the average rate of approximately 0.6 M-. per year. The events of this period may be regarded as landmarks in the evolutionary history of the Milky Way.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available