4.8 Article

Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering

Journal

BIOMATERIALS
Volume 25, Issue 21, Pages 5171-5180

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2003.12.023

Keywords

porous scaffolds; nanofibers; bone; tissue engineering

Ask authors/readers for more resources

A novel biodegradable nanocomposite porous scaffold comprising a beta-tricalcium phosphate (beta-TCP) matrix and hydroxyl apatite (HA) nanofibers was developed and Studied for load-bearing bone tissue engineering. HA nanofibers were prepared with a biomimetic precipitation method. The composite scaffolds were fabricated by a method combining the gel casting and polymer sponge techniques. The role of HA nanofibers in enhancing the mechanical properties of the scaffold was investigated. Compression tests were performed to measure the compressive strength, Modulus and toughness of the porous scaffolds. The identification and morphology of HA nanofibers were determined by X-ray diffraction and transmission electron microscopy, respectively. Scanning electron microscopy was used to examine the morphology of porous scaffolds and fracture surfaces to reveal the dominant toughening mechanisms. The results showed that the mechanical property of the scaffold was significantly enhanced by the inclusion of HA nanofibers. The porous composite scaffold attained a compressive strength of 9.8 +/- 0.3 M Pa, comparable to the high-end value (2-10MPa) of cancellous bone. The toughness of the scaffold increased from 1.00 +/- 0.04 to 1.72 +/- 0.02 kN/m, as the concentration of HA nanofibers increased from 0 to 5 wt %. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available