4.7 Article

Determination of low-abundance elements at ultra-trace levels in urine and serum by inductively coupled plasma-sector field mass spectrometry

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 380, Issue 2, Pages 247-257

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-004-2742-7

Keywords

low-abundance elements; inductively coupled plasma-sector field mass spectrometry; urine; serum; environmental monitoring; clinical samples

Ask authors/readers for more resources

A procedure is described for the determination of Y, Zr, Nb, Ru, Rh, Pd, Ag, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, An, Tl, Bi, and U in human urine and serum at concentrations relevant to the occupationally unexposed population. Sample preparation was limited to tenfold dilution with 2% HCl. A combination of a sample-introduction system designed to provide enhanced sensitivity and the use of water and acids of high-purity has resulted in limits of quantification (LOQ) in the sub-nanogram per liter range for 13 analytes. Instrumental background caused by release of analytes (Y, Zr, Ag, Sb, Au, Tl, Bi, U) from different parts of the sample-introduction system was found to be the major limitation in obtaining even better LOQ. Nevertheless, detection capabilities of the proposed procedure were adequate for all elements except Ru, Pd, and Rh. Despite of the use of high-resolution mode for these analytes some unresolved spectral interferences might still be present. For 13 elements an external accuracy assessment was accomplished by participation in proficiency testing and inter-comparison programs. Results obtained for pooled urine and serum were compared with concentrations reported for occupationally unexposed populations in recent publications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available