4.7 Article

Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin

Journal

LIMNOLOGY AND OCEANOGRAPHY
Volume 49, Issue 5, Pages 1593-1604

Publisher

WILEY
DOI: 10.4319/lo.2004.49.5.1593

Keywords

-

Ask authors/readers for more resources

Total particulate phosphorus (TPP), particulate inorganic P (PIP), and particulate organic P (POP) concentrations were measured in a year-long series of sediment trap samples collected throughout the oxic-anoxic water column (275 In, 455 m, 930 m, and 1,255 m) of the Cariaco Basin. TPP, PIP, and POP fluxes varied seasonally and decreased significantly with depth, from 65 to 19 mumol TPP m(-2) d(-1), 43 to 8 mumol PIP m(-2) d(-1), and 22 to 11 mumol POP m(-2) d(-1). Significant flux relationships (p < 0.001) were found between POP and particulate organic carbon (POC) and particulate organic nitrogen (PON). The lack of a relationship between POC and PIP fluxes and the large fraction of TPP associated with the PIP pool in both oxic and anoxic traps suggests that future analyses must separate PIP and POP when evaluating biological relationships between C, N, and P The strong relationships between POC, PON, and POP also suggest that POP is not preferentially remineralized relative to PON and POC with increasing depth in this anoxic environment. P composition was also determined using solid state P-31 nuclear magnetic resonance (NMR), and it was found that phosphonates, chemically and thermally inert compounds, are a significant fraction of the TPP pool. Furthermore, these compounds were preferentially removed relative to more bioavailable P esters during a low flux event. Their selective removal suggests that these compounds may be an unrecognized source of bioavailable P under anoxic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available