4.6 Article

Estimating action potential thresholds from neuronal time-series: New metrics and evaluation of methodologies

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 51, Issue 9, Pages 1665-1672

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2004.827531

Keywords

action potential threshold; neuron; time series analysis

Funding

  1. NINDS NIH HHS [NS046851, R01 NS046851] Funding Source: Medline

Ask authors/readers for more resources

The estimation of action potential thresholds is a subjective process, which we quantified by surveying experienced electrophysiologists via a software application that allowed them to select action potential thresholds from several presented neuronal time series. Independent of this survey, we derived two nonparametric techniques for automating the detection of an action potential threshold from the time-series of intracellular recordings. Both methods start with a phase-space representation of the action potential (dV/dt versus V). Method I detects the maximum slope in the phase space, while Method II detects the maximum second derivative in the phase space. These two methods, as well as five additional methods in the literature, were tested on three data sets representing a variety of action potential shapes, the same three dataset that were used in the electrophysiologist survey. The database of user responses was used to provide an external benchmark against which to statistically evaluate all seven methods. Method II, as well as the curvature-based Methods VI and VII, provided the best results tracking both absolute and relative changes in threshold versus the other nonparametric methods (peak of second and third time derivatives). The one parametric method evaluated, detection of threshold crossing of the first temporal derivative, performed comparably to these methods, provided that an appropriate threshold was chosen. We conclude that Methods II, VI, and VII were the best methods evaluated due to their performance across a wide range of action potential shapes and the fact that they are nonparametric. Our user database of responses may be useful to other investigators interested in developing additional methods in that it quantifies what has often been a subjective estimate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available