4.5 Article

Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines

Journal

ELECTROPHORESIS
Volume 25, Issue 17, Pages 3017-3023

Publisher

WILEY
DOI: 10.1002/elps.200305965

Keywords

amperometric detection; aromatic amines; boron-doped diamond electrode; microchip capillary electrophoresis miniaturization

Ask authors/readers for more resources

The attractive features of a boron-doped diamond (BDD) thin-film detector for microchip capillary electrophoretic (CE) separations of dye-related amino-substituted aromatic compounds are described. The diamond electrode was employed in the end-column amperometric detection of 4-aminophenol (4-AP), 1,2-phenylenediamine (1,2-PDA), 2-aminonaphthalene (2-AN), 2-chloroaniline (2-CA), and o-aminobenzoic acid (o-ABA), and its attractive behavior was compared to commonly used screen-printed carbon and glassy-carbon electrodes. These conventional electrode materials exhibit a significant degree of passivation and low sensitivity to the above-mentioned environmental pollutants. The diamond-based electrochemical detection system displayed a favorable analytical performance, including lower noise levels, higher peak resolution with enhanced sensitivity, and improved resistance against electrode passivation. Factors influencing the on-chip analysis were assessed and optimized. The diamond detector displayed detection limits of 2.0 and 1.3 mum for 4-AP and 2-AN, respectively, and a wide linear response for these compounds over the 2-50 mum range. The enhanced stability was demonstrated by relative standard deviation (RSD) values of 1.4% and 4.7% for 100 mum 1,2-PDA and 200 mum 2-CA, respectively, for repetitive detections (n = 7). Besides, the simultaneously observed current decrease was 2.4 and 9.1% for 1,2-PDA and 2-CA, respectively (compared to 21.8 and 41.0% at the screen-printed carbon electrode and 28.3 and 34.1% at the glassy carbon electrode, respectively). The favorable properties of the diamond electrode indicate great promise for environmental applications in CE and other microchip devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available