4.7 Article

Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C δ catalytic domain

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 123, Issue 3, Pages 434-443

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1111/j.0022-202X.2004.23403.x

Keywords

apoptosis; bax protein; keratinocytes; protein kinase C

Categories

Funding

  1. NCI NIH HHS [CA 83784] Funding Source: Medline

Ask authors/readers for more resources

The constitutively active catalytic domain of protein kinase C (PKC)delta is an apoptotic effector generated by caspase-3 cleavage of full-length PKCdelta in response to a wide variety of apoptotic stimuli, including UV radiation. The PKCdelta catalytic domain induces apoptosis when ectopically expressed, however, the mechanism of apoptosis induction is unclear. We constructed a chimeric protein encoding the PKCdelta catalytic domain fused to a mutated estrogen receptor ligand-binding domain in order to selectively activate the PKCdelta catalytic domain. The enzymatic activity of the PKCdelta catalytic domain fusion protein was induced in human keratinocytes treated with 4-hydroxytamoxifen, and its activation triggered loss of mitochondrial membrane potential and apoptosis. The apoptosis was associated with release of cytochrome c from the mitochondria and caspase activation, and was blocked by caspase inhibitors and the anti-apoptotic proteins Bcl-2, and Bcl-x(L), suggesting a role for mitochondrial pore formation. Consistent with this, the activated PKCdelta catalytic domain triggered the redistribution and activation of Bax, a Bcl-2 family protein that can directly induce cytochrome c release. In summary, despite being an apoptotic effector activated late in the apoptotic cascade, PKCdelta also activates upstream components of the death effector pathway to insure the demise of cells committed to apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available