4.7 Article

Nitrogen deposition and dissolved organic carbon production in northern temperate forests

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 36, Issue 9, Pages 1509-1515

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2004.04.026

Keywords

nitrogen deposition; dissolved organic matter; microbial community; extracellular enzyme activity; soil organic matter

Categories

Ask authors/readers for more resources

Deposition of anthropogenic nitrogen (N) alters the decomposition of organic matter in forest ecosystems by changing the expression of key microbial enzymes. We investigated the effects of experimental N deposition on dissolved organic matter (DOM) in soils of three forest ecosystems representative of the upper Great Lakes region: the sugar maple/basswood (SMBW), sugar maple/red oak (SMRO) and white oak/black oak (WOBO) ecosystems. Mineral soil samples were collected on five dates from ambient and N-amended plots (80 kg N ha(-1) yr(-1)) in three replicate stands of each forest type. DOM was extracted (2: 1, water:soil) from each soil sample and analyzed for dissolved organic carbon (DOC). DOC concentration was significantly greater in the N-amended soils (on average: 24% higher for SMBW, 9% for SMRO, and 40% for BOWO). In June and October 2002, bioassays were performed to assess N treatment effects on the composition of DOM and its interacting bacterial community. Within each site, DOM extracts from the ambient and N-amended plots were reciprocally inoculated with bacteria from each plot. After a 48 h incubation at 20 degreesC, community activity in each microcosm was profiled by measuring 10 extracellular enzyme activities (EEA). MANOVA showed that ecosystem type, sampling date, DOM source (ambient or N-amended plot) and inoculum source (ambient or N-amended plot) all had significant effects on bioassay EEA. Post hoc tests (Tukey's HSD) found significant reductions in oxidative enzyme activity as a result of the N treatment. In general, the bioassay results corroborated a previous report describing losses in soil oxidative enzyme activity in response to N saturation. However, it is not clear whether increased DOC concentration is the direct result of reduced oxidative activity. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available