4.2 Article

Genetic polymorphisms of cytochrome P4502C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo

Journal

XENOBIOTICA
Volume 34, Issue 9, Pages 847-859

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00498250400009197

Keywords

-

Ask authors/readers for more resources

1. The effect of cytochrome P450 (CYP) 2C9 polymorphisms on the stereoselective biotransformation of the oral anticoagulant phenprocoumon (PPC) to inactive, mono-hydroxylated metabolites was studied in vitro and in vivo. 2. In human liver microsomes, the (S)-7-hydroxylation-being the major metabolic pathway-was significantly compromised in a gene-dose-dependent manner in samples expressing the CYP2C9*2 or CYP2C9*3 allele. The CYP2C9*3/*3 genotype corresponded to an almost fourfold lower (S)-7-hydroxylation rate than CYP2C9*1/*1 (wild-type). 3. The intrinsic clearance of human recombinant CYP2C9*2 and CYP2C9*3 for the (S)-7-hydroxylation was 28.9 and 50.9% lower than of CYP2C9*1, respectively. 4. The area under the plasma concentration-time curve (AUC) of PPC metabolites after oral intake of 12 mg racemic PPC was significantly lower in volunteers expressing the CYP2C9*2 or CYP2C9*3 allele. Increasing plasma AUC metabolic ratios (parent compound/metabolite) in CYP2C9*2 and CYP2C9*3 variant allele carriers were found for each hydroxylation reaction and the CYP2C9*3/*3 genotype corresponded to an about 10-fold higher metabolic ratio of PPC (S)-7-hydroxylation relative to CYP2C9*1/*1. 5. CYP2C9 polymorphisms cause a markedly compromised PPC (S)-7-hydroxylation. However, PPC metabolism appears overall less influenced by CYP2C9 genotype compared with other oral anticoagulants and it may thus be a valuable alternative for therapeutic anticoagulation of patients expressing CYP2C9 variant alleles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available