4.5 Article

The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor

Journal

JOURNAL OF CELL SCIENCE
Volume 117, Issue 19, Pages 4435-4448

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01323

Keywords

AICD; Alzheimer's disease; Tip60; Fe65; gamma-secretase; transcriptional regulation

Categories

Ask authors/readers for more resources

The physiological functions of the beta-amyloid precursor protein (APP) may include nuclear signaling. To characterize the role of the APP adaptor proteins Fe65, Jip1b, X11alpha (MINT1) and the chromatin-associated protein Tip60, we analyzed their interactions by confocal microscopy and co-immunoprecipitations. AICD corresponding to S3-cleaved APP bound to Fe65 that transported it to nuclei and docked it to Tip60. These proteins formed AICD-Fe65-Tip60 (AFT) complexes that were concentrated in spherical nuclear spots. gamma-Secretase inhibitors prevented AFT-complex formation with AICD derived from full-length APP The APP adaptor protein Jip1b also transported AICD to nuclei and docked it to Tip60, but AICD-Jip1b-Tip60 (AJT) complexes had different, speckle-like morphology. By contrast, X11alpha trapped AICD in the cytosol. Induced AICD expression identified the APP-effector genes APP, BACE, Tip60, GSK3beta and KAI1, but not the Notch-effector gene Hes1 as transcriptional targets. These data establish a role for APP in nuclear signaling, and they suggest that therapeutic strategies designed to modulate the cleavage of APP affect AICD-dependent signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available