4.5 Article

Shear modulus of elasticity of the esophagus

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 32, Issue 9, Pages 1223-1230

Publisher

SPRINGER
DOI: 10.1114/B:ABME.0000039356.24821.6c

Keywords

esophagus; shear modulus; torsion; constitutive equation

Ask authors/readers for more resources

Experimental and diagnostic procedures like distension of a balloon catheter, bougie, and esophagogastroduodenoscopy can induce shear deformation in the esophageal wall. However, the shear modulus of the esophagus is yet unknown. The aim of this study was to determine the esophageal shear modulus and its dependence on the circumferential and longitudinal stresses and strains in the rat. The constitutive equation including the shear deformation based on a pseudo-strain-energy function was generated. Results were obtained using a new triaxial instrument to perform simultaneous torsion, inflation, and longitudinal stretching tests. The shear modulus varied with the inflation pressure and the longitudinal stretch ratio. The shear modulus at the longitudinal stretch ratio of 1.5 and between inflation pressures of 0 and 2.0 kPa ranged from 5.43 to 185.01 kPa. The mechanical constant of the esophagus showed that the esophageal wall was anisotropic with different stiffness in the circumferential, longitudinal, and the shear directions. The stiffness in the longitudinal direction was higher than in the circumferential direction (P < 0.001). This test can be extended for further mechanical remodeling experiments and for other tubular organs such as the small intestine or blood vessels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available