4.7 Article

DCTC: Dynamic convoy tree-based collaboration for target tracking in sensor networks

Journal

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 3, Issue 5, Pages 1689-1701

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2004.833443

Keywords

convoy tree; prediction; reconfiguration; sensor networks; target tracking

Ask authors/readers for more resources

Most existing work on sensor networks concentrates on finding efficient ways to forward data from the information source to the data centers, and not much work has been done on collecting local data and generating the data report. This paper studies this issue by proposing techniques to detect and track a mobile target. We introduce the concept of dynamic convoy tree-based collaboration, and formalize it as a multiple objective optimization problem which needs to find a convoy tree sequence with high tree coverage and low energy consumption. We propose an optimal solution which achieves 100% coverage and minimizes the energy consumption under certain ideal situations. Considering the real constraints of a sensor network, we propose several practical implementations: the conservative scheme and the prediction-based scheme for tree expansion and pruning; the sequential and the localized reconfiguration schemes for tree reconfiguration. Extensive experiments are conducted to compare the practical implementations and the optimal solution. The results show that the prediction-based scheme outperforms the conservative scheme and it can achieve similar coverage and energy consumption to the optimal solution. The experiments also show that the localized reconfiguration scheme outperforms the sequential reconfiguration scheme when the node density is high, and the trend is reversed when the node density is low.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available