4.6 Article

Alternative sources of hydrogen for hydrodechlorination of chlorinated organic compounds in water on Pd catalysts

Journal

APPLIED CATALYSIS A-GENERAL
Volume 271, Issue 1-2, Pages 119-128

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2004.02.052

Keywords

hydrodechlorination; palladium catalyst; rhodium catalyst; hydrazine; formic acid; chlorobenzene

Ask authors/readers for more resources

Formic acid, isopropanol and hydrazine were investigated as reductants for the Pd-catalyzed hydrodechlorination of chlorobenzene in water at ambient temperature. The intention was to find alternatives to molecular hydrogen with high water solubilities. Formic acid was found to be as reactive as H-2 under acidic and neutral conditions, but less reactive under alkaline conditions. The observed kinetics imply two pH-controlled reaction mechanisms (possibly H-atom and hydride transfer). H-consumers, such as chlorinated compounds, strongly stimulate the decomposition of formic acid. The half-life of 5 mg L-1 chlorobenzene in the presence of I mg L-1 Pd is about 2 min under optimal reaction conditions. Rh was found to be inactive in the formic acid driven hydrodechlorination. Isopropanol is less reactive by about five orders of magnitude than H-2. Hydrazine is effective as a H-donor for the hydrodechlorination under alkaline conditions. However, the reaction is slower than with H-2 by a factor of 30. From the technical and economic point of view, formic acid is a promising substitute for H-2. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available