4.5 Article

Oligomerization activity of a double-stranded RNA-binding domain

Journal

FEBS LETTERS
Volume 574, Issue 1-3, Pages 25-30

Publisher

WILEY
DOI: 10.1016/j.febslet.2004.07.080

Keywords

Xenopus laevis RNA-binding protein A; PACT; double-stranded RNA-binding domain; protein-protein interaction

Ask authors/readers for more resources

Xenopus laevis RNA-binding protein A (Xlrbpa) is a highly conserved, ubiquitously expressed hnRNP- and ribosome-associated RNA-binding protein that contains three double stranded RNA-binding domains (dsRBDs) in tandem arrangement. A two-hybrid screen with Xlrbpa as a bait recovered Xlrbpa itself as the strongest interaction partner, indicating multimerization of this protein. To search for regions responsible for the observed interaction, we conducted two-hybrid assays with Xlrbpa deletion constructs and identified the third dsRBD of Xlrbpa as the exclusive interacting domain. Additionally, these results were confirmed by coimmunoprecipitation experiments with truncated proteins expressed both in yeast and Xenopus oocytes. In PACT, the human homologue of Xlrbpa, we could demonstrate that the third dsRBD displays the same multimerization activity. Interestingly, this domain is essential for the activation of the dsRNA-activated protein kinase PKR. Addition of RNAses to coimmunoprecipitation experiments did not affect the dimerization, suggesting that the interaction is independent of RNA-binding. We report here a homomultimerization activity of a type B dsRBD and suggest possible implications that include a model for PKR activation by PACT. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available