4.6 Article

Progressive changes in Met-dependent signaling in a human ovarian surface epithelial model of malignant transformation

Journal

EXPERIMENTAL CELL RESEARCH
Volume 299, Issue 1, Pages 248-256

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2004.06.002

Keywords

hepatocyte growth factor; hepatocyte growth factor receptor; met oncogene; ovarian cancer; human ovarian surface epithelium; invasion; cell motility

Ask authors/readers for more resources

We used an experimental in vitro model of human ovarian surface epithelium (OSE), the tissue of origin of >90% of ovarian cancers, to more precisely define the contribution of hepatocyte growth factor (HGF) to various OSE phenotypes at different stages of neoplastic progression. Neoplastic transformation of OSE in cultures was achieved by multiple genetic manipulations, resulting in the nontumorigenic line IOSE-29, the tumorigenic IOSE-Ov29, and the tumor-derived, more highly malignant IOSE-Ov29/T4. We demonstrate here that, compared to IOSE-29, IOSE-Ov29 and IOSE-Ov29/T4 exhibited higher levels of the HGF receptor Met and an increasing duration of ERK1/ 2 activation with malignant progression, in conjunction with other neoplastic properties. HGF activated Met signaling in all lines but elicited different responses: HGF induced cell dispersion (scattering) and collagen gel invasion in IOSE-Ov29 and IOSE-Ov29/T4 but did not alter the growth pattern of IOSE-29. Inhibition with PD98059 and LY294002 independently prevented HGF-induced invasive growth. Furthermore, our results show that HGF-induced invasion can be mediated through a rapamycin-sensitive p70 S6K cascade, which demonstrates that p70S6K can regulate cell motility in addition to its well-established role in protein synthesis. Taken together, our data correlate specific responses to HGF-mediated signaling with specific signaling pathways and with progressive neoplastic changes. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available