4.7 Article

Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 353, Issue 2, Pages 457-467

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2004.08080.x

Keywords

gravitational lensing; cosmic microwave background; cosmological parameters; dark matter; X-rays : galaxies : clusters

Ask authors/readers for more resources

We present constraints on the mean dark energy density, Omega(X) and dark energy equation of state parameter, w(X), based on Chandra measurements of the X-ray gas mass fraction in 26 X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.07 < z < 0.9. Under the assumption that the X-ray gas mass fraction measured within r(2500) is constant with redshift and using only weak priors on the Hubble constant and mean baryon density of the Universe, we obtain a clear detection of the effects of dark energy on the distances to the clusters, confirming (at comparable significance) previous results from Type la supernovae studies. For a standard Lambda cold dark matter (CDM) cosmology with the curvature Omega(K) included as a free parameter, we find Omega(Lambda) = 0.94(-0.23)(+0.21) (68 per cent confidence limits). We also examine extended XCDM dark energy models. Combining the Chandra data with independent constraints from cosmic microwave background experiments, we find Omega(X) = 0.75 +/- 0.04, Omega(m) = 0.26(-0.04)(+0.06) and w(X) =-1.26 +/- 0.24. Imposing the prior constraint w(X) > -1, the same data require w(X) < -0.7 at 95 per cent confidence. Similar results on the mean matter density and dark energy equation of state parameter, Omega(m) = 0.24 +/- 0.04 and w(X) 1.20(-0.28)(+0.24), are obtained by replacing the cosmic microwave background data with standard priors on the Hubble constant and mean baryon density and assuming a flat geometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available