4.6 Article

Electrophoresis in a Carreau fluid at arbitrary zeta potentials

Journal

LANGMUIR
Volume 20, Issue 19, Pages 7952-7959

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la0491955

Keywords

-

Ask authors/readers for more resources

The electrophoresis of colloidal particles has been studied extensively in the past. Relevant analyses, however, are focused mainly on the electrophoretic behavior of a particle in a Newtonian fluid. Recent advances in science and technology suggest that the electrophoresis conducted in a non-Newtonian fluid can play a role in practice. Here, the electrophoresis of a concentrated colloidal dispersion in a Carreau fluid is investigated under the conditions of arbitrary electrical potential where the effect of double-layer polarization may be significant. A pseudo-spectral method coupled with a Newton-Raphson iteration scheme is used to solve the governing equations, which describe the electric, the flow, and the concentration fields. The results of numerical simulation reveal that, due to the effect of shear thinning, the electrophoretic mobility for the case of a Carreau fluid is greater than for that of a Newtonian fluid. Also, the higher the surface potential of a particle, the more significant the non-Newtonian nature of a Carreau fluid on its electrophoretic mobility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available