4.7 Article

Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1164/rccm.200401-023OC

Keywords

cytokines; heme oxygenase-1; p38 MAPK

Funding

  1. NHLBI NIH HHS [HL-60234, R01 HL-55330] Funding Source: Medline

Ask authors/readers for more resources

Ventilator-induced lung injury (VILI) is a major cause of morbidity and mortality in intensive care units. The stress-inducible gene product, heme oxygenase-1, and carbon monoxide (CO), a major by-product of heme oxygenase catalysis of heme, have been shown to confer potent antiinflammatory effects in models of tissue and cellular injury. In this study, we observed increased expression of heme oxygenase-1 mRNA and protein in a rat model of VILI. To assess the physiologic function of heme oxygenase-1 induction in VILI, we determined whether low concentration of inhaled CO could serve to protect the lung against VILI. Low concentration of inhaled CO significantly reduced tumor necrosis factor-alpha levels and total cell count in lavage fluid, while simultaneously elevating levels of antiinflammatory interleukin-10 levels. To better characterize the mechanism of CO-mediated antiinflammatory effects, we examined key signaling pathways, which may mediate CO-induced antiinflammatory effects. We demonstrate that inhaled CO exerts antiinflammatory effects in VILI via the p38 mitogen-activated protein kinase pathway but independent of activator protein-1 and nuclear factor-kappaB pathways. Our data lead to a tempting speculation that inhaled CO might be useful in minimizing VILI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available