4.7 Article Proceedings Paper

Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 68, Issue 6, Pages 1089-1100

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2004.05.031

Keywords

cyclooxygenase-2; celecoxib; transcription factors; mitogen-activated protein kinase; chemoprevention

Ask authors/readers for more resources

Expression of cyclooxygenase-2 (COX-2) has been reported to be elevated in human colorectal adenocarcinoma and other tumors, including those of breast, cervical, prostate, and lung. Genetic knock-out or pharmacological inhibition of COX-2 has been shown to protect against experimentally-induced carcinogenesis. Results from epidemiological and laboratory studies indicate that regular intake of selective COX-2 inhibitors reduces the risk of several forms of human malignancies. Thus, it is conceivable that targeted inhibition of abnormally or improperly elevated COX-2 provides one of the most effective and promising strategies for cancer chemoprevention. The COX-2 promoter contains a TATA box and binding sites for several transcription factors including nuclear factor-kappaB (NF-kappaB), nuclear factor for interleukin-6/CCAAT enhancer-binding protein (NF-IL6/C/EBP) and cyclic AMP response element (CRE) binding protein. Upregulation of COX-2 is mediated by a variety of stimuli including tumor promoters, oncogenes, and growth factors. Stimulation of either protein kinase C (PKC) or Ras signaling enhances mitogen-activated protein kinase (MAPK) activity, which, in turn, activates transcription of cox-2. Celecoxib, the first US FDA approved selective COX-2 inhibitor, initially developed for the treatment of adult rheumatoid arthritis and osteoarthritis, has been reported to reduce the formation of polyps in patients with familial adenomatous polyposis. This COX-2 specific inhibitor also protects against experimentally-induced carcinogenesis, but the underlying molecular mechanisms are poorly understood. The present review covers the signal transduction pathways responsible for regulating COX-2 expression as novel molecular targets of chemopreventive agents with celecoxib as a specific example. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available