4.7 Article

Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 37, Issue 6, Pages 813-822

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2004.06.006

Keywords

peroxynitrite; superoxide dismutase; histidinyl radical; superoxide; nitric oxide; free radicals

Ask authors/readers for more resources

Human recombinant copper-zinc superoxide dismutase (CuZnSOD) was inactivated by peroxynitrite, the product of the reaction between nitric oxide and superoxide. The concentration of peroxynitrite that decreased the activity by 50% (IC50) was similar to100 muM at 5 muM CuZnSOD and the inactivation was higher at alkaline pH. Stopped-flow determinations showed that the second-order rate constant for the direct reaction of peroxynitrite with CuZnSOD was (9.4 +/- 1.0) x 10(3) M-1 s(-1) per monomer at pH 7.5 and 37degreesC. Addition of peroxynitrite (1 mM) to CuZnSOD (0.5 mM) in the presence of the spin trap 2-methyl-2-nitrosopropane led to the electron paramagnetic resonance detection of an anisotropic signal typical of a protein radical adduct. Treatment with Pronase revealed a nearly isotropic signal consistent with the fort-nation of histidinyl radical. The effects of nitrite, hydrogen peroxide, bicarbonate, and mannitol on the inactivation were assessed. Considering the mechanism accepted for the reaction of CuZnSOD with hydrogen peroxide and the fact that CuZnSOD promotes the nitration of phenolics by peroxynitrite, we herein propose that peroxynitrite reacts with CuZnSOD leading to nitrogen dioxide plus a copper-bound hydroxyl radical species that reacts with histidine residues, forming histidinyl radical. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available