4.7 Article Proceedings Paper

Synthesis of ethyleneoxide modified 3-carboranyl thymidine analogues and evaluation of their biochemical, physicochemical, and structural properties

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 12, Issue 18, Pages 4769-4781

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2004.07.032

Keywords

boron neutron capture therapy (BNCT); 3-carboranyl thymidine analogues (3CTAs); thymidine kinase 1; thymidine kinase 2; phosphorylation

Ask authors/readers for more resources

Eleven 3-carboranyl thymidine analogues (3CTAs) containing highly hydrophilic and flexible ethyleneoxide moieties were synthesized as potential agents for boron neutron capture therapy (BNCT) and their biochemical and physicochemical properties were evaluated. Based on specific structural features, this library of 3CTAs was divided into three subgroups. The first group contained 3CTAs with 1-4 ethyleneoxide units between the thymidine (Thd) scaffold and a carborane cluster. The second group of 3CTAs contained a pentylene spacer between Thd and the carborane and 2-4 ethyleneoxide units additionally attached to the carborane cluster. The third group contained three 3CTAs all with pentylene spacers and four ethylene units but with different carborane cages. The ethyleneoxide modified 3CTAs were good substrates of thymidine kinase 1 (TK1) and poor substrates of human mitochondrial thymidine kinase 2 (TK2) as determined in phosphoryl transfer assays. In the first group of 3CTAs, all the compounds were efficiently phosphorylated regardless of varying spacer lengths (37-42% of the activity of Thd). The second group of 3CTAs was less effectively phosphorylated (17-26% of the activity of Thd) probably due to a less favorable sterical orientation of Thd within the active site of TK1 and/or an increased lipophilicity compared with the first group. In the third group of structural isomers, no significant differences in phosphorylation rates were observed (17-25%). A structure-function hypothesis explaining these results is presented. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available