4.6 Article

Energy-level structure and spectral analysis of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12

Journal

JOURNAL OF APPLIED PHYSICS
Volume 96, Issue 6, Pages 3050-3056

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1776320

Keywords

-

Ask authors/readers for more resources

A detailed crystal-field splitting analysis is given for the 26 lowest-energy multiplet manifolds, L-2S+1(J), of Nd3+ (4f(3)) in polycrystalline ceramic garnet Y3Al5O12 (YAG). The absorption spectra obtained between 8 K and room temperature, and between 1750 and 350 nm, and the fluorescence spectrum obtained at 8 K and observed between 1450 and 875 nm are analyzed for transitions between individual energy (Stark) levels that characterize the energy-level structure of Nd3+ ions in D-2 symmetry sites, replacing Y3+ ions in the garnet host lattice. A model Hamiltonian including atomic and crystal-field terms is diagonalized within the complete 4f(3) SLJM(J) basis set which includes 364 states. The calculated splitting of the Nd3+ energy levels by the crystal field is compared with the experimental splitting observed in both the ceramic sample and a single-crystal laser rod. Both samples have approximately the same Nd3+ concentration, about 1 at. %. By varying the atomic and crystal-field parameters, we obtain a standard deviation of 18 cm(-1) between 106 calculated-to-observed Stark levels found between the ground state and the D-4(1/2) at 28 369 cm(-1). Within this standard deviation the energy-level structure of Nd3+ is found to be similar in both samples. Low temperature visible and near IR spectra of ceramic Nd3+:YAG show it has comparable properties to the crystalline analog. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available